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1. Phys.: Condens. Matter 3 (1991) 7587-7597. Printed in the UK 

Commensurate phases for a two-dimensional non-linear 
lattice 

PTchofo Dinda and E Coquet 
Laboratoire OSC FacultC des Sciences, 6 boulevard Gabriel, 21100 Diion, France 

Received 1 March 1991 

Abstract. We consider a two-dimensional (2D) hexagonal lattice model with Wosites per cell 
and an on-site double-quadratic potential, where harmonic interactions are taken into 
account. We present a simple calculation procedure for obtaining the slatic solutions of 
atomicpositions for all the commensurate phases of the model. We derive a detailed phase 
diagram which demonstrates the validity of these solutions. and which exhibits some new 
features of the model which are evident when comparisons with previous workare made. 

1. Introduction 

ID and ZD non-linear lattices have been intensively investigated to model some phase 
transitions in various materials such as Lilo, [l] NaNOz or SC(NH,), [2-41 domain 
walls in ferroelectric and antiferroelectric crystals [5, 61, spatially modulated systems, 
[7-111, incommensurate phases [ 121 or chaotic states [13-151. The calculational pro- 
cedures of static solutions for the isolated wall structures (1, 6 ,  91, the commensurate 
phases [7-91 and the chaotic states [13-151 have been set up for classical I D  models. 
However, all these calculations are difficult to extend to ZD non-linear lattice models 
because of their complexity. The main problem in determining the static structures of 
these ZD models lies in calculating the atomicpositions, from which the energy of the 
structure is derived. To our knowledge, the commensurate static solutions for the ZD 
models treated so far have been always obtained only for simple phases with lower 
period or higher symmetry [I, 16191. This restriction to only such phases generally 
allows one to solve almost all the mathematical problems hut  provides obviously only 
partial results, so that very often the phase diagrams (PD) for ZD models are over- 
simplified. That is, that they show a great variety of quasi-ID phases and only a few 'true 
ZD phases' [ I ,  17, 181. In [17], Buttner and Heym considered a triangular lattice with 
an on-site double-quadratic substrate potential. Their PD shows two true ZD phases. 
Vlastou-Tsinganos et a1 [IS] examined a trigonal lattice with an on-site @ substrate 
potential. In the PO that they obtain, one finds only one Duem phase. Coquet ef al [l] 
investigated a hexagonal lattice. No truezD phase appears in the PD obtained by the latter 
(where only quasi-lo phases are present). However, it should be mentioned that lengthy 
calculations are usually needed to obtain the static solutions for the true Z D  phases. It is 
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then fairly tedious to derive a detailed PD which necessitates that agreat number of true 
ZD phases are examined. 

In the present paper we present a simple calculational procedure for obtaining the 
static solutions for atomic positions for all the commensurate phases of a classical ZD 
non-linear lattice. We consider the hexagonal lattice examined recently by Coquet et a1 
[l] to study some phase transitions in lithium iodate, described in detail in section 2. 
Besides the fundamental interest of this model, it should be stressed that it provides a 
fairly complete description of the different enantiomorphic forms of the a-phase and 
the a-to-y transition of LiIO,, as discussed in [l]. This crystal has been intensively 
investigated from an experimental point of view, owing to its non-linear optical proper- 
ties. It has also attracted new interest in particular for its structural phase transitions [l, 
20-221. Three modificationsof LiI0,are known; upon heating, a-LiI03 (i .e. the a-phase 
of LiIO,) transforms reversibly into y-LiIO, (at about 500 K with a large hysteresis), 
and then y-LiIO, transforms irreversibly into P-LiIO, (at 540 K) which is stable up to 
the melting point (768 K). Further details about LiIO, can be found in [1,20-241. The 
model under consideration also provides the possibility of some useful extensions such 
as the study of finite systems in an attempt to explain some grain size effects on the phase 
transition temperatures observed in MO,. 

In the present paper, we show that each commensurate phase P. * P, (i.e. with 
periodicity P,2 and P, respectively in the two directions n and in of the lattice) with 
configuration u (sequence of king variables + I  describing the occupied side of the 
double-well substrate potential at each cell of the lattice) can be characterized by a 
matrix M(P., P,) from which the atomic positions are derived in a straightforward 
manner by elementary calculations. We present the matrices M (P,,, P,,,) for all the 
commensurate phases of the model. The main virtue of this calculational procedure is 
that it enables us to investigate any commensurate phase of the model, unlike previous 
work [l] where the static solutions are calculated only for the 2 * 2 phases. Moreover we 
re-emphasize that no true ZD phase appears in the PD obtained in [I] .  shown in figure 1, 
where one finds only a few quasi-lo phases. The PD that we obtain in the present work 
preserves most of the main conclusions drawn in [l] and therefore demonstrates the 
validityofour commensurate staticsolutionsM (P,,,Pm), but ourcalculationalprocedure 
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is more general in that our PD shows a great variety of irue ZD phases, and also some 
quasi-1Dphases. Moreover, as discussedlater, our resultsshow that the hexagonal model 
under consideration cannot even partially provide, as claimed in [l], a description of p- 
LiIO,, or the y4o-P transition of LiIO,. On the other hand our PD exhibits a special 
feature of the model, i.e. is a re-entrant behaviour which occurs in some parameter 
regions with a reentrant frue ZD phase. This unusual phenomenon has been already 
observed for nematic and smectic phases of some liquid crystalline materials with cyano 
derivatives [25-271 and also in a quasi-iD system, described by two coupled king order 
parameters [28]. 

Thepaper isorganizedasfollows. Insection2 wedescribe the modeland wecalculate 
the matrices M (Pn, f,,,) for all the commensurate phases of the model. We also stress 
the ease with which the static solutions are derived from this calculational procedure. In 
section 3 we obtain the PD. In section 4 we compare our PD with the other work and 
discuss the new features of the model, and in section 5 we summarize our results. 

2. General solutions 

The model is schematically shown in figure 2 ,  where two sites i = 1,2  lie at positions (8, 
f ) ,  (4, $) in each cell. (The relationship between LiI03 and the hexagonal model under 
consideration is discussed in detail in [I] .)  The cells are Iabelled by indices, n,  m and 
each site is characterized by an angle qn.m,i which represents the rotational position of 
an iodate ion of LiIO,, as we discuss later, which we call henceforth 'atomicposifion' to 
use a more usual terminology. There exists for each atomicposition of 10: ions two 
possible equilibrium configurations. This physical behaviour is generally modelled by 
assuming anon-sitedouble well potential [I. 20,211. chosenin [I] with adouble quadratic 
shape: 

p = iY2(qn.m.i - E6", , , , ) *  

where e2p2/2measures the potential barrier, u ~ , ~ , ,  = sgn(q,,,,,), and ? E  locates the two 
minima of the potential. A site n ,  m of type i ( i  = 1,2) is connected to neighbouring sites 
by harmonic interactions of constant k, to the three nearest neighbours of the second 
type, k2 with the six nearest neighbours of the same type i and k, with the three second 
neighbours of the opposite type. We assume the same symmetrized form of the energy 

0 S i b 1  
Figure 2. The hexagonal 2D lattice model under 

* lit. 2 consideration. 
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per site as that considered in 111. The static structure of the system is obtained by energy 
minimization, which gives the following equilibrium equations for each site: 

[ p 2  + 3(kl + k3) + 6k2]qn,m,i - ki(qn.m.2 + 4 n . m - 1 . 2  + q n t i . m . z )  

-k2(qn-l,m,i + q n - i . m - 1 , 1  + 4 n . m - 1 . 1  

+ qn+1.m. i  + q " + l . m t l , l  + 9n"l. l )  

P Tchofo Dinda and E Coquet 

( 2 . 1 ~ )  

+ q n + i . m . 2  + 4 n + l . m + 1 . 2  + Sn.m+1.2) 

-k3(qn-,,m-i.i + q n + l . m + i . i  + q n - i . m + ~ . l )  = W 2 u n . m . 2 .  (2.16) 

We start from equations (2.1) already obtained in [I]. and we use a two-step process 
to derive the general solution for a commensurate phase P,, * P, with configuration U. 

(i) We rewrite the above equilibrium equations with the periodicity condition in m: 

Qn.m.r = qn .m+P, . ,  (2.2) 

which gives us a system of ZP,,, equations which we transform into the following matrix 
equation: 

A(pnJ'Jn-~(pm) + B(Pm)Un(Pm) + A(Pm)' ' Jn+ i (pm)  = D n ( P m )  

where U,(P,) and D,(P,) are the 2P, x 1 (column) matrices respectivelyfor theatomic 
positions and the configuration U ,  listed in table 1. The superscript T denotes the 
transpose matrix; A(P,) and B(P,) are 2Pm x 2Pm matrices defined as follows: 

for all n 

(2.3) 

-2kb 

p 2  + 3(k,  + k , )  + 4k2 

with 

p = p2 + 3(kl + k3) + 6k2. (2.6) 
From P, = 3 upwards, the orders of A(P,) and B(F,J become increasingly large so 

that it becomes convenient to express the matrices A(P,) and B(Pm) in block form. 
Expressing these matrices as P,,, x P, matrices whose elements are 2 X 2 submatrices, 
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Table 1. Matrices for the aromicpositiom and the configuration a 
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- 
x* x3 0 ... 0 
x,  x> xg 0 ... 
0 x,  x i  X) 0 "' 0 

0 ... 0 x, x* x, 0 
0 ... 0 x,  x2 x, 

x, 0 t.. 0 X I  X I  "' ii - - .  

we find that they have the same general expression and each of them is determined by a 
unique set of three 2 x 2 submatrices, for all P, 3 3. So we introduce the notation $i 
(xl, x2, x3) for a matrix A(P,) or B(P,) associated with the set of 2 x 2 submatrices x,, 
x2, x3, where tbe subscript j indicates the order of @, (a,%, is a j X j matrix). We have 
introduced this subscript in order to make the ensuing discussion clearer. The general 
expression of the matrix $i is given in table 1. In this notation the matrices A(P,) and 
B(P,) have a simple form; which renders the forthcoming manipulations less cumber- 
some: 

W,) = Gpm(a1, a2, a,) B(Pm)=1Lp,@i,b,b?) for P, 3 (2.7) 

where 

-k2 -kj -k2 0 0 0  
-k) ( -kl  -k2) a 3 = (  -k3 0 ) 

(2.9) 

(ii) We now rewrite equation (2.3) with the periodicity condition in the n direction: 

U,(Pm) =Un+p.(Pm) (2.10) 

V(P, ,Pm) = WP,, P J 1  W,, P,). (2.11) 

which gives us a system of P, matrix equations whose solution is 

In this expression V(P,, P,) and F(P,, P,) are the 2P,P, X 1 matrices, respectively, 
for the atomicpositions and the configuration aof a commensurate phase P, * P,. These 
matrices are expressed in table 1 as a P. X 1 matrix whose elements are submatrices 
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2P, x 1. M(P,, P,) is a 2P,Pm x 2P,,P, matrix characterizing a P. * P,n phase. This 
matrix is expressed conveniently as a P, x P,, matrix whose elements are submatrices 
ZP, x ZP,, Thus, the 1 * P, (quasi-iD structures) and 2 * P, phases are characterized 
by the following matrices: 

P Tchofo Dinda and E Coquet 

M(1. P,) = A(P,) + B(P,) + A(P,)T (2.12) 

From P, = 3 upwards, all the matrices M(P,, P,J have the same general expression 
as the previous matrix +(x , x2, x,) (table 1). but with 2P, X 2P, submatrices as 
elements, Thus, the notation + introduced earlier gives a truly simple expression for 
higher-period phases: 

'. 

M(Po. P,) *P~(A(P,), B(pn1), A(P,IT) for P. 3. (2.14) 

Thus, the static solutions M(P,, P,) from which the afomic positions for all the 
commensurate phases of the models are derived are then given by equations (2.12)- 
(2.14), theA(P,,J and B(P,) beingobtainedfromequations(2.4). (2.5)and(2.7)-(2.9). 
We see that the matrices M(P,,, P,) have a relatively simple expression for all P, * P, 
phases, and we stress that essentially no calculation is required to build up the matrices 
M(P,, P,), but onlye1ementaryarrangementsofsubmatricesarenecessary.Thedesired 
solutions are ultimately obtained by simply working out M(P,, P,)-' in equation (2.1 1). 
The procedure is classical and fairly simple. Furthermore, it is also interesting to note 
from equations (2.7)-(2.9) and (2.14) that, for P. * P, 3 3 *  3, all the matrices 
M(P,,, P,) are built up in a straightforward manner from the single set of the 2 x 2 
submatrices a, ,  a*, a,, b, and b. On the other hand we see that the solutions for 
the lower-period 1 * P, and 2 * P, phases can be entirely calculated analytically from 
equation (2.11) by elementary algebraic manipulations (required to work out M(P,, 
P J l )  since their corresponding matrices M(P,, P,), respectively, have the simplest 
expressions (see equations (2.12) and (2.13)). As the periodicity increases, the order of 
M(P,,, P,) becomes increasingly large and so it becomes advantageous to perform 
equation (2.11) numerically. Furthermore it is very helpful, for determining a PD where 
a great number of phases have to be examined, to note that all the configurations 
U corresponding to the same periodicity P. * P, have the same matrix M(P,, P,). 
Furthermore, the static solutions hence obtained have, of course, to be checked for self- 
consistency at each site. The self-consistency condition is written as 

on,,., = sgn(q.,,.,). (2.15) 
This calculational procedure enables us to study any commensurate phase of the 

model. Consequently a detailed PD analysis can now be performed, which we illustrate 
in the following section. 

3. Phase diagram 

A current problem arises in determining the ground-state (GS) configurations of theor- 
etical lattice models with a double-well substrate potential, owing to the two possible 
local configurations for each site of the lattice subjected to the double-well potential. 
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For a given set of the model parameters, the possible periods range from unity (1 * 1) 
to infinity (m * m, i.e. incommensurate phases). Consequently there exists an infinite 
number of configurations which are candidates for the G S .  In general the evaluation of 
the absolute (true) GS is an extremely important problem, for various physical systems. 
This problem has been solved successfully for some magnetic spin systems using the 
method of simulated annealing [29-321. This method can also be used for classical lattice 
models but necessitates the assumption of some periodicities for the GS [18,19] because 
classical theoretical lattices are treated as infinite systems. Usually one assumes a given 
number of phases of physical interest as candidates for the GS. Very often these are 
lower-period phases or phases with higher symmetry 11, 7-9, 16191. In the present 
paper we consider only centrosymmetric phases and phases with an inversion centre, 
because the previous studies of ZD models 11, 16-18] and ID uersions of similar lattices 
[7-91 show that only these types of phase appear in the PD. As discussed below, phases 
ofphysicalinterest for Li I03  have the lowest periodicities, 1 * 1 and 1 * 2. However. we 

z , , l , , , a  , , , .  
k,= 1.00 pz= 3.00 (a) 1 

0 

4" 

-2 

1 ' " ' I ' ' ' I  

-0.8 k,= 1.00 pz= 3.00 ( c )  

2 2.5 3 
ki 

0'7 

0.3 
-1.6 -1.4 -1.2 -1 -0.8 -0.6 

kt 

Figure 3. Plot of the PD obtained in the present 
work. (b) and (c) are enlargement of the small 
boxes B and C. respectively, in (a). 
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also include higher-period phases to see whether the true 2D phases which do not 
appear in previous PD (figure 1) can be the GS of the model. We consider the following 
periodicities: 1 * 1,1* 2,1* 3,1* 4,1* 5.2 *2,2* 3,2*4and3 * 3.Thesearesufficient 
for drawing most of the interesting conclusions for LiI03. There are altogether 512 
possible configurations ocorresponding to the above periodicities, but only 140 of them 
correspond in fact to energetically different phases because of symmetry reasons (these 
symmetriesarediscussedindetailin[l]). For agivenparameterset, the~sisdetermined 
by requiring that the self-consistency condition equation (2.15) is fulfilled and that the 
phase has the lowest energy of all the investigated phases. We work out numerically 
equation (2.1 l), and we consider the same parameter space as in [ 11 in order to compare 
our results with that work. We obtain the PD shown in figure 3, where the shaded line 
indicates thephonon stabiiiry line. The phonon stability of the model is obtained in detail 
in [l]. Consequently this point is not discussed in the present paper. In the PD, by a* 
and y* we denote the 2D uersions of cu-LiIO, and y-LiIO,, respectively, obtained by 
performing a 2~ projection of the structure of Lilo3 onto the a-b plane orthogonal to 
theeaxisofthecrystal, asschematicallyindicatedinfigure4where theangle Orepresents 
the rotational position of an IO; ion. The cu-to-y transition of LiIO, is mainly charac- 
terizedbyrotationsaroundthecaxisofsome IO; ions[20,2l]sothatitcan bedescribed 
by the model under consideration. However, it should be mentioned that a quantitative 
picture of the a-to-y transition cannot be obtained with the present model because 
additional theoretical and experimental investigations are required to determine the 
model parameters, and only a qualitative description can be derived. 

We see effectively that in the parameter region k ,  < 2, the transition a*-to-y* 
appears in both the PD derived in the present paper (figure 3) and that obtained in [l] 
(figure l), for the same parameter sets k , ,  k,; our PD thus preserves the main result 
obtained in [l]. We also see that the parameter region for phase I is essentially the 
same for the two diagrams. These results demonstrate the validity of our calculational 
procedure for the static solutions presented in section 2. In the other parameter regions 
the two diagrams are different because of the higher-period phrases that we have 
included in our investigations. In an effort to clarify the situation, we discuss in the 
following section the new features of the model which are elucidated by our PD when 
comparisons with the previous work are made. Furthermore we mention that in figure 
1 we have changed the notation used in [ 11 and used the same notation as for figure 3 
just to make the comparison between the two diagrams clearer. 

'* Figure4. Projectiononthea-bplancofthe e- and 
y-phases of Lilo,, denoted e* and y'. respect- 
ively. 
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4. Comparison with other work and discussion 

The ZD version of p-LiI03 which may have the configuration 

(denoted 111 in [l] is denoted p* in the present paper. Coquet eta1 [l] noticed that the 
present model cannot provide a complete description of p-LiI03 because the transition 
y-to-fi also involves rotations of the 1 0 5  ions around axes lying in the a-b plane (figure 
4). However, as appears as a GS in their PD (see figure l), they then concluded that 
the present model gives a partial account of p-LiI03; this statement is incorrect because 
our PD (figure 3) shows that p* is no longer a Gs when higher-period phases are included 
in the investigations. Thus, our PD shows clearly that the ZD hexagonal model under 
consideration cannot even partially provide a description of the /3-phase or the y-to-p 
transition of LiIO,. Consequently, the rotations around the c axis of the crystal of the 
105  ions are not the preponderant phenomenon of the y-to-P transition of LiI03. 

Our PD (figure 3) also shows a great variety of true ZD phases, unlike the previous PD 
(figure 1). These are phases IV, V, VI, VI1 and VIII. Some quasi-ID phases also appear: 
these are phases I, I1 and 111. Note that phases I1 and I11 do not appear in the previous 
PD (figure 1). We use the roman numerals to specify that the 3D oersions of such phases 
have never been observed experimentally in LiI03. The fact that they appear as a GS of 
this theoretical model does not guarantee that they exist. 

In order to determine the parameter region in which the acto-y transition of LiIO, 
is qualitatively obtained, Coquet et a1 [l] remarked that, for large k , ,  the a*-toy” 
transition disappears, which puts an upper bound on the interesting values of k ,  
for LiI03, i.e. k, < k,,,. For the latter, k,,,, = 3 (see figure 1) whereas, for our PD, 
k,,,, = 2. We show in a forthcoming paper, where we examine the effects of size on 
phase transitions, that the a-to-y transition of LiIO, is qualitatively obtained in a small 
parameter region neighbouring the set k ,  = -2k, = 2, pz = 3k3 = 1. 

On the other hand, our PD exhibits a special feature of the model, i.e. a re-entrant 
behaviour which occurs in some parameter regions, with a re-entrant true ZD phase. In 
effect we point out that, when k ,  varies from the border of the phonon stability region 
towards the @*-phase region, fork ,  = 2.1 (for instance), the system undergoes a tran- 
sition from phase IV to phase V, and then reverts back to phase IV (see figure 3(c)). 
Phase Vis therefore a re-entrant phase. This unusual phenomenon, called ‘re-entrant 
behaviour’, has been observed for nematic and smectic phases of some liquid crystalline 
materials with cyano derivatives [25-271, such as the octyloxybenzoyloxycyano stilbene 
[E].  Sigaud et a1 [27] have performed a systematic comparative study of several series 
of chemically neighbouring compounds apt to show a re-entrant behaviour. Coulon and 
Prost [28] have shown that a quasi-ID system described by two coupled Ising order 
parameters can show a re-entrant behaviour. The system considered by the latter admits 
a high-temperature phase and two condensed states as stable phases, and the high- 
temperature phase isrecovered when the two order parameters have the same ‘tendency’ 
for condensation [28] which results, according to the latter, from large fluctuations 
from one condensed state to  the other. However, to our knowledge, this interesting 
phenomenon has not yet been revealed for the ZD non-linear models considered so far. 
Thus, our results show that a re-entrant behaviour can also occur in a classical ZD non- 
linear model, with a re-entrant  true?^ phase (phase V). This is the main result of our 
paper. Furthermore it should be mentioned that the fact that the re-entrant behaviour 
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is observed in the model under consideration does not imply that such a phenomenon 
exists in Lilo,. It should be noted that this phenomenon involves a re-entrant phase 
(phase V) whose 3D version has never been observed experimenially in LiIO,. We now 
summarize all the results of the present paper. 

P Tchofo Dinda and E Coquet 

5. Summary and conclusions 

We have set up a simple calculational procedure for obtaining the static solutions of 
atomic positions for all the commensurate phases of a ZD non-linear lattice, considered 
recently by Coquet et al [l] for its interest for LiI03. In the approach developed in the 
present paper, each commensurate phase P, * P, with configuration U is characterized 
by a matrix M(P,, P,) from which the static solutions are derived in a straightforward 
manner by elementary calculations (equation (2.11)). This calculational procedure 
enables us to investigate any commensurate of the model unlike previous studies of ZD 
models[l. 11,16-19]. Throughout thepaper.although we havealwaystreated the model 
in relationship with LiIO, (from which the model has been constructed [ 11) and focused 
our attention on its interest for Lilo,, we stress that this calculational procedure is quite 
general and can be easily extended to some other ?D models with a double-quadratic 
substrate potential such as the triangular lattice examined in [17] or the quadratic lattice 
considered by Behnke and Biittner [16]. 

We have derived a mote detailed PD than that in previous work [l]. which exhibits 
some new features of the model (figure 3). As general results, we find that the model 
admits a great variety of true ZD phases as GS (whose 3~ uersions have never been 
observed experimentally in LiI03). The ?D uersion of P-LiIO, (p* )  does not appear in 
our PD (unlike the previous PD), which means that the rotations around the c axis of 
LiIO, of the IO, ions (i.e. the atomicpositions considered in [ l]  and also in the present 
paper) are not the preponderant phenomenon of the y-to-@ transition of LiIO,. Conse- 
quently, the 2~ hexagonal model under consideration cannot even partially provide, as 
claimed in [l], a description of the P-phase or the y-to$ transition of Lilo,. Such a 
description requires consideration of a 3n model which also includes the rotations of the 
IO: ions around the axes lying in the a-b plane (figure 4). Furthermore, our PD exhibits 
an unusual phenomenon, i.e. a re-entrant behaviour with a re-entrant true ZD phase 
(phasevinfigure 3). 

All results of the present paper are also of agreat interest for some useful extensions 
of the model, such as the study of thefinite versions of the lattice in order to derive the 
effectsof size on phase transitions, which we shall illustrate in a forthcoming paper [33], 
as it requires that the static structures of the infinire uersion of the lattice are known. 
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